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1 Introduction

In this paper we consider string theory on an AdS background and discuss the quantum

corrections to the target space radius, in the sigma model perturbation theory. The em-

bedding of the string worldsheet into the target space is described by a sigma model on

a (super)coset manifold. String propagation on the coset manifold G/H can be described

by a gauged WZW models. In bosonic WZW models, the level of the current algebra gets

shifted at one-loop from k to k + 1
2cG, where cG is the quadratic Casimir of the group

G [1]. In the sigma model interpretation of WZW theory, the level is related to the radius

of the target space manifold, which is the inverse of the sigma model coupling constant.

Therefore, the classical relation R2/α′ = k gets modified at one-loop to R2/α′ = k + 1
2cG

and in the full quantum theory there is a minimal value for the radius of the manifold, set

by the quadratic Casimir of the group. The situation is different for gauged WZW models

with worldsheet supersymmetry [2]. In that case, the fermionic and bosonic determinants

cancel out and the relation between the radius and the level is not renormalized. These

kinds of sigma model describe bosonic or RNS string theory on backgrounds supported by

NS-NS flux. What happens with Ramond-Ramond flux?

In this paper, we address this question in the case of superstring theory on AdS5 ×S5,

which is described by a sigma model on a supercoset. The AdS radius is again equal to

the inverse of the sigma model coupling constant and is related to the ’t Hooft coupling λ

of the dual N = 4 super Yang-Mills theory through the dictionary

R2/α′ = f(λ) , f(λ) ∼λ→∞

√
λ+ C1 + O(1/

√
λ) ,

– 1 –
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The leading term in the large ’t Hooft coupling expansion corresponds to the classical

supergravity dictionary, but in principle subleading terms are allowed and C1 would arise

at one-loop in the sigma model perturbation theory. This would be the analogue of the

finite shift by 1
2cG in the level of the current algebra in gauged WZW models. In this

paper, we will show that

C1 = 0 .

The fact that the classical AdS5 × S5 solution of type IIB superstring is not modified

by higher order α′ corrections has been first discussed in the early days of AdS/CFT [3, 4].

The first correction to type IIB supergravity comes at O(α′3) and it is the familiar R4

term. The only component of the curvature that enters the R4 term is proportional to the

Weyl tensor, and since AdS5 ×S5 is conformally flat, such leading correction vanishes. All

the other terms related to R4 by supersymmetry also vanish in this background, as well

as the corresponding higher order corrections to the dilaton equation of motion. Using

superspace techniques, due to the 32 supersymmetries of this background, this result can

be extended to prove that the solution is not renormalized at all orders in α′.1 More

recently, S-duality arguments applied to the giant magnon dispersion relation (where the

function f(λ) appears) have confirmed this result from the dual field theory side [6].

In order to study the renormalization of the radius, we need to compute the sigma

model quantum effective action

Seff = Sdiv + Sfinite .

The divergent part of the effective action vanishes [7, 8], which implies that the sigma

model is conformally invariant and the radius does not run (see also [9, 10]). However,

one still needs to evaluate the finite part of the effective action, which may consist of

local as well as non-local terms. The local terms can be reabsorbed or adjusted by local

counter-terms to restore the classical symmetries. On the other hand, the presence of finite

non-local contributions to the effective action could not be removed and would generate a

non-zero C1. Moreover, finite non-local terms in the effective action may produce gauge or

BRST anomalies.

In this paper we will compute the finite part of the effective action at one-loop and show

that all non-local contributions vanish. Due to the presence of the Ramond-Ramond flux,

the worldsheet supersymmetric RNS description is not valid and we must use either the

κ-symmetric Green-Schwarz-Metsaev-Tseytlin sigma model [11] or the BRST-symmetric

pure spinor sigma model [12]. Since we would like to preserve covariance at all stages,

we will consider the pure spinor approach. Because the covariant approach does not have

worldsheet supersymmetry, we cannot borrow the RNS results, but we need to compute

explicitly the one-loop effective action.

As a byproduct of our analysis, we will show that are no gauge nor BRST anomalies

in the sigma model, confirming by an explicit one-loop computation the all-loop algebraic

arguments in [8]. The last step in checking that the sigma model is quantum mechanically

consistent at one-loop is the determination of its central charge, namely the leading quartic

1The non-renormalization is also confirmed by explicit computations of the OPE’s of the currents [5].

– 2 –



J
H
E
P
0
9
(
2
0
0
9
)
0
5
6

pole in the OPE of two stress tensors. Using the background field method, we show that

the central charge vanishes.2

Let us briefly comment on the case of the AdS4×CP 3 background. This is a solution of

type IIA supergravity with only 24 supersymmetries, so the superspace arguments in [3, 4]

do not hold and one might expect the solution to get corrected. Even if the background is

realized as the supercoset Osp(4|6)/SO(1, 3) × U(3), where Osp(4|6) has a vanishing dual

Coxeter number just as PSU(2, 2|4), the full superstring sigma model is not described by

a supercoset [14], unlike the AdS5 × S5 background. Hence, the methods we use in this

paper may not be immediately generalized to that background. In [15], a correction to the

function f(λ) =
√
λ(1 +C1/

√
λ+ C2/λ+ . . .) has been proposed, where C1 = 0 and C2 is

a two loop numerical coefficient. It would be interesting to study this correction from the

sigma model point of view.

In the rest of the introduction, we will review the computation of the effective action

in the bosonic and RNS string. In section 2 and in the appendix we collect some notations

about the superstring sigma model on AdS5 × S5. In section 3 we compute the one-loop

effective action using the background field method and discuss its properties. In section 4

we show that the central charge vanishes at one-loop.

1.1 The effective action in bosonic and RNS string

Let us review the computation of effective actions in the closed bosonic and RNS string.

We will set the notations and show why the bosonic string renormalizes, while worldsheet

supersymmetry protects the metric from α′ corrections at one-loop.

The bosonic string in a curved background is (we are assuming that Bmn = 0)

Sbos =

∫
d2z

[
∂xm∂xnG(x)mn

]
. (1.1)

In the covariant background field expansion we fix a classical solution of the worldsheet

equations of motion x0 and expand around it in the quantum fluctuations X,

Sbos = S0 +

∫
d2zηab

[
∇Xa∇Xb + . . .

]
, (1.2)

where . . . are terms depending on the curvature, ∇Xa = ∂Xa + AabXb, A
ab = ∂xm

0 ω
ab
m

and ωab
m is the spin connection. When one uses the normal coordinate expansion within

the background field method, local Lorentz invariance is used to fix the spin connection

to zero. In this case the resulting effective action will not have this symmetry. Keeping

local Lorentz invariance we have to check if the effective action is not anomalous under

this symmetry.

The effective action in momentum space is

Seff =
1

2

∫
d2k

[
1

2
Aab(−k)Aab(k)

k

k
+

1

2
A

ab
(−k)Aab(k)

k

k
− 1

2
Aab(−k)Aab(k)

]
(1.3)

2The same method used in this paper can be applied to the AdSp × Sp pure spinor compactifications

of [13], to obtain the same non-renormalization of the radius, due to the fact that the dual Coxeter numbers

of the corresponding lower dimensional coset models vanish as well. For the non-critical AdS2p backgrounds

in [13], the dual Coxeter number does not vanish and the radius may get renormalized already at one loop.

– 3 –
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The loop integrals are done using dimensional regularization adding a small mass m to

the Xa fields in order to regularize IR divergencies. All the UV divergences cancel, and the

dependence on the dimensional regularization mass scale µ is an infrared effect, so we can

identify the mass regulator m with µ.3 The gauge variation of the effective action vanishes,

even for the non-local IR divergent terms. We see that there is a finite local counter-term

responsible for the gauge invariance. This is just a redefinition of the metric

G(x0)mn → G̃(x0)mn = G(x0)mn + α′ 1

4
ωab

mωnab,

and the new metric now has a gauge transformation

δG̃(x0)mn = α′ 1

4
∂mΛabω

ab
n + α′ 1

4
∂nΛabω

ab
m .

The anomaly is trivial, this is the reason why we can fix the connection to be zero when

using normal coordinates.

Let us see what happens in RNS string. Its action in a curved background is

SRNS =

∫
d2z

[(
∂xm∂xn +

1

2
ψm∂ψn +

1

2
ψ

m
∂ψ

n
(1.4)

+
1

2
ψmΓn

op(x)∂x
oψp +

1

2
ψ

m
Γn

op(x)∂x
oψ

P
)
G(x)mn +

1

4
Rmnopψ

mψnψ
o
ψ

p
]
.

Again, we fix a classical solution of the worldsheet equations of motion (x0, ψ0, ψ0) and

expand around it in the quantum fluctuations (X,Ψ,Ψ),

SRSN = S0 +

∫
d2z

[
ηab∇Xa∇Xb + ηab

1

2
Ψa∇Ψb + ηab

1

2
Ψ

a∇Ψ
b
+ . . .

]
, (1.5)

where . . . are terms depending on the curvature. The effective action is just

−1

2

∫
d2k[Aab(−k)Aab(k)]

since non-local terms cancel due to worldsheet supersymmetry. We have to add a local

counter-term to cancel the anomalous variation of this term, which removes the term above.

Such term may appear naturally in other regularization scheme, see e.g. [17]. We see that

in the case of RNS superstring, even without gauge fixing the connection, there are no finite

local corrections in the effective action. In RNS the IR divergent terms are also present

and are gauge invariant. These terms are related to the fact that X(z) is not a primary

field in two dimensions. In the case case of Type I or Heterotic string we would have

the usual local Lorentz anomaly that appears because we have only left moving fermions,

which can be canceled by a variation of the B field. In coset models, like the superstring in

AdS5×S5 space, it is useful to keep the connection unfixed since this simplifies significantly

the background field expansion.

3We are ignoring IR divergent terms like ln( |k|2

µ2 ). These terms are an IR effect and are expected to

vanish when the full perturbative series is summed [16].

– 4 –
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2 Pure spinor superstring in the AdS5 × S5 background

The AdS5×S5 background can be described by the coset superspace PSU(2, 2|4)/SO(4, 1)×
SO(5) [11]. From the metric and structure constants listed in appendix A, we see that the

super Lie algebra PSU(2, 2|4) admits a decomposition [18] under Z4, H =
∑Hi, i = 0 to 3

Ta ∈ H2, T[ab] ∈ H0, Tα ∈ H1, Tbα ∈ H3. (2.1)

Using the supertrace notation and setting α′ = 1, we write the AdS5 × S5 pure spinor

action [7, 19] as

S0 =
R2

2π

∫
d2z Str

(
1

2
J2J2 +

3

4
J3J1 +

1

4
J1J3 + w∇λ+ ŵ∇λ̂−NN̂

)
(2.2)

where

J0 = (g−1∂g)[ab]T[ab], J1 = (g−1∂g)αTα,

J2 = (g−1∂g)mTm, J3 = (g−1∂g)bαTbα,

w = wαTbαδ
αbα, λ = λαTα, N = −{w, λ},

J0 = (g−1∂g)[ab]T[ab], J1 = (g−1∂g)αTα,

J2 = (g−1∂g)mTm, J3 = (g−1∂g)bαTbα,

ŵ = ŵbαTαδ
αbα, λ̂ = λ̂bαTbα, N̂ = −{ŵ, λ̂},

∇ = ∂ + [J0, ], ∇ = ∂ + [J0, ], (2.3)

δ
αbβ

= (γ01234)
αbβ

, TA are the PSU(2, 2|4) Lie algebra generators. Note that

{Tα,Tβ} = γm
αβTm, {Tbα,Tbβ

} = γm

bαbβ
Tm, {Tα,Tbβ

} =

(
1

2
γ[ab]γ01234

)

αbβ

T[ab] . (2.4)

Also note that λ and λ̂ are fermionic since (Tα,Tbα) are fermionic and (λα, λ̂bα) are bosonic.

The action of (2.2) is manifestly invariant under global PSU(2, 2|4) transformations which

transform g(x, θ, θ̂) by left multiplication as δg = (ΣATA)g and is also manifestly invariant

under local SO(4, 1) × SO(5) gauge transformations which transform g(x, θ, θ̂) by right

multiplication as δΛg = gΛ and transform the pure spinors as

δΛλ = [λ,Λ], δΛλ̂ = [λ̂,Λ], δΛw = [w,Λ], δΛŵ = [ŵ,Λ]

where Λ = Λ[ab]T[ab].

3 Effective action

We can quantize the classical action (2.2) using the covariant background field method.

This method was used in [7] to prove one-loop conformal invariance of (2.2). In this section

we will compute the one-loop effective action.

– 5 –
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3.1 Matter

A classical background field g̃ is chosen and the quantum fluctuations are parameterized

by X = X1 +X2 +X3, with g = g̃eX , in the gauge X0 = 0. The quantum currents are

J = g−1∂g = e−X J̃eX + e−X∂eX , (3.1)

J = g−1∂g = e−X J̃eX + e−X∂eX ,

where J̃ = g̃−1∂g̃.

The OPE for the quantum fluctuations is

XA(z)XB(w) → −ηBAln|z − w|2 . (3.2)

Since we are going to do a one-loop computation, we expand (3.1) up to the second order

in X,

J |i = J̃ |i +
1

R

(
dX + [J̃ ,X]

)
|i +

1

2R2

[
dX + [J̃ ,X],X

]
|i + O(R−3) , (3.3)

We separate the relevant terms in the action as follows. The kinetic terms are

Skin =

∫
d2zStr

(
1

2
∇X2∇X2 +

1

4
∇X1∇X3 +

3

4
∇X3∇X1

)
, (3.4)

where the covariant derivative ∇Xi = ∂Xi + [J0,Xi] depends on the background gauge

current. We will put in SI all the terms that contain either J2 or J2 or both

SI =

∫
d2zStr

(
1

2
J2[X1,∇X1] +

1

2
J2[X3,∇X3]

+
1

4
J2

[
[J2,X1],X3

]
− 1

4
J2

[
[J2,X3],X1

])
. (3.5)

To ease the notation, we will drop the˜on top of the background currents. We will put

into SII all the terms that depend on J1 or J3 or both

SII =

∫
d2zStr

(
1

8
J1(3[X1,∇X2] + 5[X2,∇X1]) +

1

8
J3(3[X3,∇X2] + 5[X2,∇X3])

−1

2
J1

[
[J3,X2],X2

]
+

1

4
J1

[
[J3,X1],X3

]
− 1

4
J1

[
[J3,X3],X1

])
. (3.6)

Finally, we collect in SIII the terms that depend on J3 or J1 or both

SIII =

∫
d2zStr

(
1

8
J1([X1,∇X2] − [X2,∇X1]) +

1

8
J3([X3,∇X2] − [X2,∇X3])

+
1

2
J1 [[J3,X2],X2] +

3

4
J1 [[J3,X1],X3] +

1

4
J1 [[J3,X3],X1]

)
. (3.7)

– 6 –
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3.2 Ghost

Let us consider the ghost part of the one loop effective action. We expand the left and

right moving ghosts into upper case background fields and lower case fluctuations

(w, λ) → (W + w,L+ λ) , (ŵ, λ̂) → (Ŵ + ŵ, L̂+ λ̂) . (3.8)

The ghost Lorentz currents are expanded as

N → N(0) +
1

R
N(1) +

1

R2
N(2), N̂ → N̂(0) +

1

R
N̂(1) +

1

R2
N̂(2) , (3.9)

where (N(0), N̂(0)) denote the background currents while

N(1) = −{W,λ} − {w,L} , N(2) = −{w, λ} ,
N̂(1) = −{Ŵ , λ̂} − {ŵ, L̂} , N(2) = −{ŵ, λ̂} . (3.10)

We expand the classical ghost action according to (3.10) and collect the terms quadratic

in the fluctuations

S =
1

2

∫
d2zStr

{
N(0)

(
[∇X3,X1] + [∇X2,X2] + [∇X1,X3]

)

+N̂(0) ([∇X3,X1] + [∇X2,X2] + [∇X1,X3])

−N(1)N̂(1) +N(2)(J0 − N̂(0)) + (J0 −N(0))N̂(2)

}
. (3.11)

3.3 Effective action

The computation of the effective action at one loop order proceeds as follows. There are

two kind of terms that we need to compute, schematically

Seff =

∫
d2z〈L(z)〉 − 1

2

∫
d2z

∫
d2w〈L(z)L(w)〉 , (3.12)

where the 〈·〉 denotes functional integration over the fluctuating fields. The first term

〈L(z)〉 corresponds to the normal ordering of the composite operators in the lagrangian: it

is just given by the one loop self energy of the fluctuations at the same point, in operators

with two external currents. These are the second lines in (3.5), (3.6) and (3.7). The second

term 〈L(z)L(w)〉 corresponds to the one loop fish diagram generated by the contraction of

the operators with one external current, namely the first lines in (3.5), (3.6) and (3.7).

As an example, we explicitly evaluate the term in the effective action proportional to

the operator StrJ1J3. Using the OPE’s for the quantum fluctuations (3.2) we find

Seff =

∫
d2z Jα

1 J
bα
3 (z)[−ln(0)]

(
3

4
fβ

bαa
fa

αβ +
1

4
f

[ef ]
bαβ

fβ
α[ef ]

)
(3.13)

+

∫
d2z

∫
d2w Jα

1 (z)J
bα
3 (w)fβ

bαa
fa

αβ

(
34

64
δ(2)(z − w)ln|z − w|2 − 30

64

1

|z − w|2
)
,

The last line in (3.6) contributes to the self-energy graphs in the first line, while the first

line in (3.6) contributes through the OPE of 3
8 [X1,∇X2] + 5

8 [X2,∇X1] and 3
8 [X3,∇X2] +

– 7 –
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5
8 [X2,∇X3], generating the term in the second line. Using the map to momentum space,

listed in appendix B, this gives the following term in the effective action

S
(1)
eff =

∫
d2z Jα

1 J
bα
3

[
1

ǫ

](
3

4
fβ

bαa
fa

αβ +
1

4
f

[ef ]
bαβ

fβ
α[ef ]

)
−

∫
d2zJα

1 J
bα
3 f

β
bαa
fa

αβ

[
1 +

1

ǫ

]
. (3.14)

The divergent part of the effective action cancels and we are left with the following fi-

nite piece4

Seff(J1J3) = 10

∫
d2zStr J1J3 , (3.15)

which is local. By analogous computations we end up with the full effective action

Seff =

∫
d2z Str

(
a1J2J2 + a2J1J3 +

1

2
c2(H)(J0J0 −NJ0 − N̂J0)

)
. (3.16)

where a1 = 8, a2 = 10 and c2(H) = 3 is the quadratic Casimir of the gauge group

H = SO(1, 4)×SO(5). We did not include the IR singular terms proportional to ln|p|2/µ2,

which are expected to vanish once the full perturbative series is included [16]. The expres-

sion (3.16) has the following properties:

(i) It is local, hence it can be removed by adding a local counter-term Sc = −Seff to

the action, according to the prescription given in [8] to preserve gauge and BRST

symmetries. As a result, we proved that there are no gauge nor BRST anomalies at

one-loop.

(ii) By explicit computation, we checked that operators of weight (2, 0) and (0, 2), e.g.

of the kind StrJiJj , StrNN or Str N̂N̂ , are not generated at one-loop, due to re-

markable cancellations in the diagrams caused by the vanishing of the dual Coxeter

number of PSU(2, 2|4).

4 Central charge

The last step in checking that the worldsheet theory is consistent at one-loop is the com-

putation of the central charge. The stress tensor for the action (2.2) is

T = −Str

(
1

2
J2J2 + J1J3 + w∇λ

)
. (4.1)

We want to compute the one loop correction to the central charge. This is the quartic pole

in the OPE

〈T (z)T (0)〉 =
c/2

z4
+ . . . ,

where 〈·〉 denotes functional integration. We expand T according to (3.1) and we compute

the contractions of the fluctuations. The terms coming from the action do not contribute

4We used the identity f
β

bαa
f bα

αβ = −fa

bαbβ
f

bβ
αa and the fact that the combination 1

2
f

β

bαa
fa

αβ − 1
2
f

[ef ]
bαβ

f
β

α[ef ]
=

Rbαα(G) = 0, since G = PSU(2, 2|4) has vanishing dual Coxeter number. Moreover we used the identity

γm

bα bβ
= ηαbαη

β bβ
(γm)αβ .

– 8 –
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to the central charge. We find a leading tree level contribution, proportional to 1/R4,

where R is the radius and the action is normalized as S = R2

2π

∫
L. The one loop correction

is proportional to 1/R6. To compute terms of order 1/R8 we need to expand (3.1) up to

O(R−3), so they will be neglected and we will stop at one loop. We find

〈1
2
StrJ2J2(z)

1

2
StrJ2J2(0)〉 =

1

R4

1

z4

(
10

2
− 1

2R2
[1 + ln|z − w|2]ηlmf

bδ
lαf

α

mbδ

)
, (4.2)

where ηlmf
bδ
lαf

α

mbδ
= 1

4Trγaγa = 40. The first term arises from the double contraction at

tree level, while the second comes from the triple contraction at one loop. The second

contribution is

〈StrJ1J3(z)StrJ1J3(0)〉 = − 1

R4

1

z4

(
32

2
+

1

2R2
[1 + ln|z − w|2]ηlmf

bδ
lαf

α

mbδ

)
. (4.3)

The mixed term is

− 〈StrJ2J2(z)StrJ1J3(0)〉 =
1

R6

1

z4
[1 + ln|z − w|2]ηlmf

bδ
lαf

α

mbδ
. (4.4)

By summing up (4.2), (4.3) and (4.4) we get the total contribution of the matter part. The

one-loop correction cancels out exactly, leaving only the tree level part, which is the same

as in flat space

〈Tmatter(z)Tmatter(0)〉 = − 1

R4

22

2z4
. (4.5)

Let us look at the ghost part. The tree level contribution involves a trace on the ghost

spinor indices and is equal to the analogous flat space contraction. In the gauge X0 = 0

the ghost sector does not give any one-loop correction and it starts contributing only at

two loops (the leading term in w[J0, λ] with no external fields is O(R−4)), so we find

〈Tgh(z)Tgh(0)〉 =
1

R4

22

2z4
, (4.6)

and by adding (4.6) and (4.5) we proved that the total central charge vanishes at one loop.

Since the effective action does not receive any finite corrections at one loop, there is

no correction to the stress tensor either.
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A Notations

The metric in the PSU(2, 2|4) is

ηab = ηba; ηab = ηba; (A.1)

ηαbβ = −ηbβα = (γ01234)
αbβ ; η

αbβ
= −ηbβα

= (γ01234)αbβ
;

η[ab][cd] =
1

2
ηa[cηd]b; η[a′b′][c′d′] = −1

2
ηa′[c′ηd′]b′ ;

η[ab][cd] =
1

2
ηa[cηd]b; η[a′b′][c′d′] = −1

2
ηa′[c′ηd′]b′ .

The underlined vector index a = 0, . . . , 9 is ten-dimensional, while a = 0, . . . , 4 and

a′ = 5, . . . , 9 represent the AdS5 and the S5 directions respectively; the indices α, α̂ =

1, . . . , 16 describe SO(1, 9) Weyl spinors of the same chirality. Capital letters are collective

PSU(2, 2|4) indices, A = (a, α, α̂, [ab]).

The metric satisfies ηABηBC = δA
C . Denoting (Ta,T[ab],Tα,Tbα) the generators of the

algebra, ηAB = 〈TA,TB〉. The non-vanishing structure constants fC
AB of the PSU(2, 2|4)

algebra are

f
c
αβ = γ

c
αβ, f

c

bαbβ
= γ

c

bαbβ
, (A.2)

f
[ef ]

αbβ
=

1

2
(γef )α

γη
γ bβ
, f

[e′f ′]

αbβ
= −1

2
(γe′f ′

)α
γη

γ bβ
,

f
bβ
αc = −(γc)αβη

β bβ , fβ
bαc

= (γc)bαbβ
ηβ bβ ,

f
[ef ]
cd = δ[ec δ

f ]
d , f

[e′f ′]
c′d′ = −δ[e

′

c′ δ
f ′]
d′ ,

f
[gh]

[cd][ef ] =
1

2
(ηceδ

[g

d δ
h]
f − ηcfδ

[g

d δ
h]
e + ηdfδ

[g
c δ

h]
e − ηdeδ

[g
c δ

h]
f )

f
f

[cd]e = ηe[cδ
f

d], fβ
[cd]α =

1

2
(γcd)α

β, f
bβ
[cd]bα =

1

2
(γcd)bα

bβ.

B Map to momentum space

It is not clear upon inspection which terms in the effective action in coordinate space are

finite or divergent. Also, we have the usual complications due to infrared divergencies.

To clarify the interpretation, we will transform the above two point functions into loop

integrals in the momentum space. We perform the loop integral using dimensional regu-

larization adding a small mass m to the Xa fields in order to regularize IR divergencies.

The dependence on the dimensional regularization mass scale µ is an infrared effect, so we

can identify the mass regulator m with µ. In order to simplify the calculation, we build a

dictionary between the above two point functions and and the corresponding result of the

– 10 –
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integration over the momenta [20]

1

(z − w)2
↔ −p

p
,

1

(z − w)2
↔ −p

p
,

ln|z −w|2
(z − w)2

↔ −p
p

(
1 + 2ln

( |p|2
µ2

))
,

ln|z −w|2
(z − w)2

↔ −p
p

(
1 + 2ln

( |p|2
µ2

))
,

1

|z −w|2 ↔ 1 +
1

ǫ
− 2ln

( |p|2
µ2

)
,

−ln|z − w|2δ(z − w) ↔ 1 +
1

ǫ
,

−ln(0) ↔ 1

ǫ
. (B.1)
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